
PHYSICAL REVIEW E 66, 017205 ~2002!
Microextensive chaos of a spatially extended system
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By analyzing chaotic states of the one-dimensional Kuramoto-Sivashinsky equation for system sizesL in the
range 79<L<93, we show that the Lyapunov fractal dimensionD scalesmicroextensively, increasing linearly
with L even for incrementsDL that are small compared to the average cell size of 9 and to various correlation
lengths. This suggests that a spatially homogeneous chaotic system does not have to increase its size by some
characteristic amount to increase its dynamical complexity.
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An important phenomenon associated with sustained n
equilibrium systems is spatiotemporal chaos, a chaotic
namical state that is spatially disordered@1,2#. An open ques-
tion is how best to characterize spatiotemporal chaos so
theory can be quantitatively compared with experiment a
experiment with simulation. Presently, there is no fundam
tal theory of nonequilibrium systems to indicate the app
priate quantities to measure and so researchers have
rowed ideas from condensed matter physics, fluid dynam
nonlinear dynamics, and statistics. Commonly used way
characterize spatiotemporal chaos include critical expon
@3#, the two-point correlation timet2 @4#, the largest
Lyapunov exponentl1 @2#, the Lyapunov fractal dimension
D, the two-point correlation lengthj2 @5#, the dimension
length jd @2,6# and other lengths@2,7,8#. However, calcula-
tions have shown that these quantities do not always lea
the same conclusions, e.g., there are systems for which
lengthj2 diverges while the lengthjd remains finite as some
parameter is varied@7#. Further research is therefore need
to understand the particular features of spatiotemporal ch
that are measured by any one of these quantities and
these quantities are related to one another.

In the following, we report results that provide an insig
about how the dynamical complexity of a nonequilibriu
system depends on the volume of the system, and abou
interpretation of the dimension lengthjd . In 1982, Ruelle
conjectured@9#, and numerical calculations later confirme
@7,10–12# that the dimensionD of a sufficiently largespa-
tially homogeneouschaotic system should increase exte
sively, i.e., linearly with its volumeV. Using an argumen
similar to that used by Landau and Lifshitz to explain t
extensivity of additive quantities in thermodynamics@13#,
this extensivity ofD can be understood heuristically as
consequence of spatiotemporal disorder. If two subsyst
of a spatiotemporal chaotic system are sufficiently far ap
their coupling is weak because of the disorder and so t
dynamics contribute independently and additively to
overall fractal dimension.

This picture of weakly interacting subsystems raises
question of how precisely does the fractal dimensionD in-
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crease with increasing system volume in the extensive
gime. One possibility is that the curveD(V) may be linear
only on average and has a staircase-like structure, with
steps corresponding to new degrees of freedom that ap
once the system volume has increased sufficiently to incl
a new subsystem. The widthsDV of the steps would then
define a length scale (DV)1/d ~whered is the spatial dimen-
sionality of the system! that would be interesting to compar
with the lengths mentioned above (j2 , jd , etc.!. Possible
steplike features in theD(V) curve might also be associate
with the appearance of new linearly unstable modes of so
nonlinear state, since the number of such modes can incr
linearly on average with increasing volume@14#. Another
possibility is that the curveD(V) is extensive only on aver
age but its deviation from linearity is too irregular to cha
acterize by a single length scale. A fourth possibility is th
there are no length scales associated with howD increases
with V and the curveD(V) is exactly linear for arbitrarily
small increases inV, a situation that one could callmicroex-
tensive chaos. In this case, it would be interesting to unde
stand how the geometric structure of the chaotic attracto
phase space changes withV so as to produce such an exa
linear behavior.

In this paper, we numerically integrate the on
dimensional Kuramoto-Sivashinsky~KS! equation—a
widely studied continuum model of spatiotemporal cha
@2#—to investigate how the Lyapunov fractal dimensio
D(L) of a homogeneous chaotic system varies with the s
tem sizeL for incrementsDL that are small compared to th
lengths mentioned above (j2 , jd , etc!. With one exception
@11#, all prior numerical studies used incrementsDL that
were large compared to these lengths and the detailed f
of D(L) was not determined. We show below that, in fa
the Lyapunov fractal dimensionD increases linearly withL
even for system incrementsDL that are tiny compared to th
average cell size and to various correlation lengths. The s
tiotemporal dynamics of the one-dimensional KS equat
therefore provides an example of microextensive chaos.
conjecture that this will be a general property of chaotic h
mogeneous nonequilibria media in a sufficiently large d
main.

Our calculations ofD versusL yield an additional insight,
namely that the onset of extensivity inD is not sharp but
occurs only asymptotically with increasingL, after a se-
quence of alternating windows of stationary, periodic, int

.,
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mittent, and chaotic dynamics.~Such alternating windows
have been noted before for the KS equation@15#—and in
other systems@16#—but have not been studied with such fin
resolution in L as we do here.! These results suggest th
possibility that windows of nonchaotic behavior may pers
to arbitrarily large values ofL but become too narrow to b
detected. If true, the dimensionD(L) may not be a continu-
ous curve and extensive behavior occurs only between
narrow windows of nonchaotic dynamics.

Our results were obtained by numerical integrations of
one-dimensional Kuramoto-Sivashinsky equation in the fo

] tu~ t,x!52]x
2u2]x

4u2u]xu, xP@0,L#, ~1!

on an interval of lengthL, with rigid boundary conditions
u5]xu50 at x50 and atx5L. ~Figure 1 shows a chaoti
and periodic state forL550 and 54, respectively.! The spa-
tial derivatives were approximated by second-order-accu
finite differences on a uniform spatial mesh, and a stand
operator-splitting method was used for the time integrat
@17#. For given initial conditions and interval lengthL, we
used the Kaplan-Yorke formula@18# to calculate the
Lyapunov fractal dimensionD(L) in terms of all of the posi-
tive and some of the negative Lyapunov exponentsl i . These
exponents were obtained using a standard algorithm tha
volves integrating many copies of the linearized KS equat
along a given orbit of the KS equation@19#.

The demonstration of microextensive scaling by t
above numerical methods was delicate since the Lyapu
exponentsl i and soD converge noisily and slowly@20#
toward their infinite time limits. As the incrementDL in
system size became smaller, the corresponding increme
dimensionDD was more difficult to determine sinceDD

FIG. 1. Space-time evolution of the fieldu(t,x) for two states of
the Kuramoto-Sivashinsky equation~1! with rigid boundary condi-
tions. The space-time resolution wasDt50.025 andDx50.166 and
the peak-to-peak amplitude is about 4.~a! Chaotic state forL550.
Spatial curves are plotted everyDT51 time units starting at time
t550 000. ~b! A periodic state forL554 with period t5127.6.
Spatial curves are plotted everyDT55 time units starting at time
t580 000.
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became comparable to the fluctuations in the dimens
curveD(T) as a function of integration time. The exponen
l i and dimensionD(L) were also sensitive to the values
the spatial resolutionDx and temporal resolutionDt, to the
renormalization timeTnorm for the Lyapunov vectors, and to
the total integration time. For nearly all runs reported belo
we used values ofDx50.167,Dt50.025, andTnorm510 and
confirmed the correctness of the corresponding results
comparing the values with spatial and temporal resoluti
up to four times larger and for integration times as long
106 time units.

We now turn to our results. Our starting point was t
pioneering calculation of Manneville@10#, who used numeri-
cal integrations of Eq.~1! with rigid boundary conditions to
demonstrate for the first time that the fractal dimensionD
scaled extensively with the system sizeL. For L>50, he
found that D50.230L22.70, which implies a dimension
length @6# of jd5(dD/dL)2151/0.230'4.4 @22#. This
length is somewhat smaller than the average cellular sizl
52p/qmax52A2p'8.8 corresponding to the fastest grow
ing linear mode qmax51/A2. Based on these result
we chose to calculate the fractal dimensionD(L) in con-
stant incrementsDL51.0 that were much smaller tha
these lengths. In contrast, the smallest increment used
Manneville wasDL550 for which the fractal dimension
changes by about 12.

Manneville’s linear dependence ofD on L suggested tha
for L>50, only spatiotemporal chaos exists. In contrast,
find that there is a complicated sequence of different dyna
cal states over the range 50<L<75 and then only chaotic
states for 75,L,93 @23#. Figure 2 summarizes our resul
for the range 50<L<75 by plotting the period of each stat
as a function ofL. We observe four kinds of states: fixe

FIG. 2. Periods of numerical solutions to Eq.~1! versus the
system lengthL. Each integration was started from small-amplitu
random initial conditions and then integrated 500 000 time un
There is a complex sequence of windows corresponding to cha
constant, intermittent, and periodic dynamics. Chaotic and interm
tent solutions have been assigned an arbitrary period of2200 and
2100, respectively, so that all the data could be compared
one plot.
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points, time-periodic states, chaos, and intermittent state
which one kind of time dependence alternates irregula
with a different kind of time dependence. To combine all t
results on a single plot, chaotic states were arbitrarily
signed a period of2200, intermittent states a period o
2100, fixed points a period of 0, and periodic states a dir
estimate of their period based on repeating features of
time series.

There are two interesting features of the dynamical sta
of Fig. 2 in addition to the occurrence of many windows
alternating dynamics for this range ofL. First, we found that
for a given system sizeL, numerical integrations using up t
seven different random initial conditions~each consisting of
uniformly distributed numbers in the interval@20.1,0.1#)
led to only one state. Thus empirically there seems to be o
one basin of attraction for each system size and we do
expect hysteresis in the range 50,L,75. Second, we found
rather remarkably that the fractal dimensionD of each cha-
otic state in Fig. 2 lay on Manneville’s extensive cur
D(L)50.230L22.70 with D>D(50)58.8 ~a least-squares
fit of our chaotic states gave the almost identical cu
0.227L22.85). Thus the states jump abruptly from low
dimensionalD51 periodic states to high-dimensional ch
otic states that are scaling extensively with the system s
We did not try to characterize the intermittent states, e.g.
their fractal dimension or by the scaling properties of t
fractional duration of a particular phase@21#.

Over the range 78,L,93, only chaotic states were ob
served. Fig. 3 shows that the corresponding values of
Lyapunov fractal dimensionD lie on a straight line that ha
the same slope~to two digits! and intercept as that found b
Manneville over the much larger range 50,L,400. Thus
the fractal dimension shows microextensive scaling: a lin
dependence on L for system incrementsDL that are much
smaller than any characteristic length scale such as the
erage cell size or various correlation lengths.Given the
similar result obtained by Xiet al. @11# for a different math-
ematical model of spatiotemporal chaos, we conjecture
microextensive scaling will be a general feature of s
tiotemporal chaos in sufficiently large, approximately hom
geneous nonequilibrium systems.

In conclusion, we have demonstrated the occurrence
microextensive scaling of the Lyapunov fractal dimens
with system size for the one-dimensional Kuramo
.
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Sivashinsky equation with rigid boundary conditions. Th
suggests that a spatially extended nonequilibrium dynam
system does not have to increase its volume by some m
mal amount for the fractal dimension to increase. Cor
spondingly, the dimension lengthjd does not have some di
rect physical meaning as the characteristic size of
dynamical subsystem, it is simply determined by the line
growth of D with L. Our calculations suggest two questio
for further exploration. One is whether there is a cutoff sy
tem sizeLc above which only chaotic solutions are found f
the KS equation. Second is to understand mathematic
how the geometry in phase space of a strange attra
changes with system sizeL such that the fractal dimensionD
varies exactly linearly withL.

We thank Scott Zoldi for useful discussions and Jam
Gunton for informing us of his related calculations o
the Nicolaevski model. This work was supported
NSF Grant No. DMS-9722814 and DOE Grant N
DE-FG02-98ER14892.

FIG. 3. The Lyapunov fractal dimensionD of chaotic solutions
to Eq. ~1! versus system sizeL for 79<L<93.The dimension val-
ues accurately fall on a straight line, demonstrating the occurre
of microextensive scaling.The straight lineD50.227L22.85 was
obtained by a least-squares fit to the points and agrees well
Manneville’s result@10# of D50.230L22.70 over the much large
range 50,L,400. The error bar for each point corresponds to
relative error of at most 0.05% inD. The error bar was determine
by the peak-to-peak fluctuations ofD versus integration timeT.
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